hbichsel@uw.edu :Si-Fano-Alli:BFVP-Feb: Fig.1

	Ener	gy loss j	per colli	ision: E]			
			_			$\mathbf{n_{j}}$	$\Delta_{\mathbf{j}}(\mathrm{eV})$	$E_{t}(eV)$
 0	+					2	56	37
 0		00+		+ 0	+ 0	8	703	559
	0	0 +			0	4	126	68
 0	0		0		0	4	82	32
 0 0	+	0 0	0 0	0		8	419	292
 0	+	0	0		0	5	565	502
		0	00+		0	5	95	35
 0	0	0	0	0 0	0	7	146	26
	0	0	O l			4	105	34
 0	0	0 0	OD +	0	0	9	930	774
x=1.8 mm P10						$\Delta {=} \Sigma \mathrm{E}$		

Figure 1: MC simulation of 10 particles with speed $\beta\gamma=3.6$ traversing x=1.8 mm of P10 gas.

E < 30eV: o E > 30eV: +

Figure 1: Calculations for protons with $\beta\gamma=0.316$ traversing 10 $\mu{\rm m}$ of Si. Solid line: convolution with Bethe-Fano theory. Dashed line: convolution with Rutherford DCCS, dotted line: Laplace transform with Rutherford DCCS.

Figure 1: Calculations for protons with $\beta\gamma=100$ traversing 10 $\mu{\rm m}$ of Si. Solid line: convolution with Bethe-Fano theory. Dashed line: GEANT4.

Figure 1: DCCS for 100 MeV protons traversing Si calculated with Bethe-Fano theory. f(E) represents the DCCS in arbitray units.

Figure 1: DCCS for 100 MeV protons traversing Si calculated with Bethe-Fano theory. f(E) represents the DCCS in arbitray units.

Figure 1: DCCS for 100 MeV protons traversing Si calculated with Bethe-Fano theory. $\sigma(E)$ represents the DCCS. The ratio $\sigma(E)/\rho(E)$ where $\rho(E)$ is the Rutherford DCCS, is given by the solid line. The same ratio for the FVP approximation is given by the dotted line.

Figure 1: Convolutions $\sigma(E)^{*n}$ of Eq.(3) of the Bethe-Fano DCCS for particles traversing Si. $\sigma(E)$ represents the DCCS. The plasmon peak at 17 eV dominates.

Figure 1: Generalized oscillator strength (GOS) $f(\epsilon, K)$ of the Bethe-Fano theory for the L-shell of Si. Solid line: detailed atomic structure, dashed line: hydrogenic approximation. The straight lines represent the FVP approximation.